Deficient DNA Repair in Human Progeroid Cells
نویسندگان
چکیده
منابع مشابه
Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells.
Loss of DNA mismatch repair is a common finding in many types of sporadic human cancers as well as in tumors arising in patients with hereditary nonpolyposis colon cancer. The effect of the loss of DNA mismatch repair activity on sensitivity to a panel of commonly used chemotherapeutic agents was tested using one pair of cell lines proficient or deficient in mismatch repair due to loss of hMSH2...
متن کاملRobust DNA repair in PAXX‐deficient mammalian cells
To ensure genome stability, mammalian cells employ several DNA repair pathways. Nonhomologous DNA end joining (NHEJ) is the DNA repair process that fixes double-strand breaks throughout the cell cycle. NHEJ is involved in the development of B and T lymphocytes through its function in V(D)J recombination and class switch recombination (CSR). NHEJ consists of several core and accessory factors, i...
متن کاملApurinic DNA endonuclease activities in repair-deficient human cell lines.
Several autosomal recessive diseases are associated with apparent DNA repair defects in cell culture. It seemed likely that a defect in excision repair reported for ataxia telangiectasia cells might reflect a lack of apurinic endonuclease activity. We report here normal levels of apurinic endonuclease activity in extracts of cell lines derived from patients with ataxia telangiectasia, xeroderma...
متن کاملMutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells
Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end...
متن کاملCPD-photolyase adenovirus-mediated gene transfer in normal and DNA-repair-deficient human cells.
Cyclobutane pyrimidine dimers (CPDs) are the most frequent and deleterious lesions generated in the mammalian genome after UV-C irradiation. The persistence of these lesions in DNA can be toxic and mutagenic, and also represents a specific signal to apoptosis. To investigate the CPDs repair in situ and consequent UV-induced apoptosis in human cells, we generated a recombinant adenovirus vector ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1973
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.70.4.977